Abstract

BackgroundFeed cost constitutes about 70% of the cost of raising broilers, but the efficiency of feed utilization has not kept up the growth potential of today's broilers. Improvement in feed efficiency would reduce the amount of feed required for growth, the production cost and the amount of nitrogenous waste. We studied residual feed intake (RFI) and feed conversion ratio (FCR) over two age periods to delineate their genetic inter-relationships.MethodsWe used an animal model combined with Gibb sampling to estimate genetic parameters in a pedigreed random mating broiler control population.ResultsHeritability of RFI and FCR was 0.42-0.45. Thus selection on RFI was expected to improve feed efficiency and subsequently reduce feed intake (FI). Whereas the genetic correlation between RFI and body weight gain (BWG) at days 28-35 was moderately positive, it was negligible at days 35-42. Therefore, the timing of selection for RFI will influence the expected response. Selection for improved RFI at days 28-35 will reduce FI, but also increase growth rate. However, selection for improved RFI at days 35-42 will reduce FI without any significant change in growth rate. The nature of the pleiotropic relationship between RFI and FCR may be dependent on age, and consequently the molecular factors that govern RFI and FCR may also depend on stage of development, or on the nature of resource allocation of FI above maintenance directed towards protein accretion and fat deposition. The insignificant genetic correlation between RFI and BWG at days 35-42 demonstrates the independence of RFI on the level of production, thereby making it possible to study the molecular, physiological and nutrient digestibility mechanisms underlying RFI without the confounding effects of growth. The heritability estimate of FCR was 0.49 and 0.41 for days 28-35 and days 35-42, respectively.ConclusionSelection for FCR will improve efficiency of feed utilization but because of the genetic dependence of FCR and its components, selection based on FCR will reduce FI and increase growth rate. However, the correlated responses in both FI and BWG cannot be predicted accurately because of the inherent problem of FCR being a ratio trait.

Highlights

  • Feed cost constitutes about 70% of the cost of raising broilers, but the efficiency of feed utilization has not kept up the growth potential of today's broilers

  • Selection for feed conversion ratio (FCR) will improve efficiency of feed utilization but because of the genetic dependence of FCR and its components, selection based on FCR will reduce feed intake (FI) and increase growth rate

  • Feed cost constitutes about 70% of the total cost of live production, but the efficiency of feed utilization has not kept up the growth potential of today's broilers

Read more

Summary

Introduction

Feed cost constitutes about 70% of the cost of raising broilers, but the efficiency of feed utilization has not kept up the growth potential of today's broilers. Feed cost constitutes about 70% of the total cost of live production, but the efficiency of feed utilization has not kept up the growth potential of today's broilers. Improvement in feed efficiency will reduce the amount of feed required for growth, the production cost and the amount of nitrogenous waste [1]. FI and BWG makes it difficult to improve without direct effect on growth. Koch et al [5] have introduced the concept of residual feed intake (RFI) that accounts for both maintenance requirements and growth. Selection on RFI has been proposed to improve feed efficiency because of its phenotypic independence of maintenance BW and BWG. The phenotypic independence of RFI from its estimating components is the direct result of the distributing properties of the regression procedure [6]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call