Abstract

Web services, which can be described as functionality modules invoked over a network as part of a larger application are often used in software development. Instead of occasionally incorporating some of these services in an application, they can be thought of as fundamental building blocks that are combined in a process known as Web service composition. Manually creating compositions from a large number of candidate services is very time consuming, and developing techniques for achieving this objective in an automated manner becomes an active research field. One promising group of techniques encompasses evolutionary computing, which can effectively tackle the large search spaces characteristic of the composition problem. Therefore, this paper proposes the use of genetic programming for Web service composition, investigating three variations to ensure the creation of functionally correct solutions that are also optimised according to their quality of service. A variety of comparisons are carried out between these variations and two particle swarm optimisation approaches, with results showing that there is likely a trade-off between execution time and the quality of solutions when employing genetic programming and particle swarm optimisation. Even though genetic programming has a higher execution time for most datasets, the results indicate that it scales better than particle swarm optimisation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.