Abstract

AbstractThis paper describes an approach to the use of genetic programming (GP) for the automatic detection of rhythmic stress in spoken New Zealand English. A linear-structured GP system uses speaker independent prosodic features and vowel quality features as terminals to classify each vowel segment as stressed or unstressed. Error rate is used as the fitness function. In addition to the standard four arithmetic operators, this approach also uses several other arithmetic, trigonometric, and conditional functions in the function set. The approach is evaluated on 60 female adult utterances with 703 vowels and a maximum accuracy of 92.61% is achieved. The approach is compared with decision trees (DT) and support vector machines (SVM). The results suggest that, on our data set, GP outperforms DT and SVM for stress detection, and GP has stronger automatic feature selection capability than DT and SVM.KeywordsSupport Vector MachineProsodic FeatureLexical StressVowel QualityGenetic Programming SystemThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.