Abstract

Analytic models of a computer generated time series (logistic map) and three real time series (ion saturation current in Aditya Tokamak plasma, NASDAQ composite index and Nifty index) are constructed using Genetic Programming (GP) framework. In each case, the optimal map that results from fitting part of the data set also provides a very good description of the rest of the data. Predictions made using the map iteratively are very good for computer generated time series but not for the data of real systems. For such cases, an extended GP model is proposed and illustrated. A comparison of these results with those obtained using Artificial Neural Network (ANN) is also carried out.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.