Abstract

BackgroundFor dogs and cats, chemoprophylaxis with macrocyclic lactone (ML) preventives for heartworm disease is widely used in the United States and other countries. Since 2005, cases of loss of efficacy (LOE) of heartworm preventives have been reported in the U.S. More recently, ML-resistant D. immitis isolates were confirmed. Previous work identified 42 genetic markers that could predict ML response in individual samples. For field surveillance, it would be more appropriate to work on microfilarial pools from individual dogs with a smaller subset of genetic markers.MethodsMiSeq technology was used to identify allele frequencies with the 42 genetic markers previously reported. Microfilaria from ten well-characterized new isolates called ZoeKY, ZoeMI, ZoeGCFL, ZoeAL, ZoeMP3, ZoeMO, ZoeAMAL, ZoeLA, ZoeJYD-34, and Metairie were extracted from fresh blood from dogs. DNA were extracted and sequenced with MiSeq technology. Allele frequencies were calculated and compared with the previously reported susceptible, LOE, and resistant D. immitis populations.ResultsThe allele frequencies identified in the current resistant and susceptible isolates were in accordance with the allele frequencies previously reported in related phenotypes. The ZoeMO population, a subset of the ZoeJYD-34 population, showed a genetic profile that was consistent with some reversion towards susceptibility compared with the parental ZoeJYD-34 population. The Random Forest algorithm was used to create a predictive model using different SNPs. The model with a combination of three SNPs (NODE_42411_RC, NODE_21554_RC, and NODE_45689) appears to be suitable for future monitoring.ConclusionsMiSeq technology provided a suitable methodology to work with the microfilarial samples. The list of SNPs that showed good predictability for ML resistance was narrowed. Additional phenotypically well characterized D. immitis isolates are required to finalize the best set of SNPs to be used for large scale ML resistance screening.

Highlights

  • For dogs and cats, chemoprophylaxis with macrocyclic lactone (ML) preventives for heartworm disease is widely used in the United States and other countries

  • Because ML resistance has a genetic origin [14], whole genome analysis has been performed on well characterized susceptible D. immitis isolates from the U.S, Italy, Gran Canaria, and Grenada and loss of efficacy (LOE) isolates from the U.S to identify genetic differences that could correlate with evidence of LOE and resistance [13]

  • One hundred eighty-six single nucleotide polymorphisms (SNP) showed highly significant differences between pools of susceptible and LOE D. immitis. Based on these 186 SNPs, Sequenom® SNP frequency analyses were conducted on 663 individual parasites which were phenotypically characterized as susceptible (SUS), confirmed ML treatment survivors/resistant (RES), or suspected resistant/loss of efficacy (LOE) parasites

Read more

Summary

Introduction

Chemoprophylaxis with macrocyclic lactone (ML) preventives for heartworm disease is widely used in the United States and other countries. Since 2005, cases of loss of efficacy (LOE) of heartworm preventives have been reported in the U.S More recently, ML-resistant D. immitis isolates were confirmed. One hundred eighty-six single nucleotide polymorphisms (SNP) showed highly significant differences between pools of susceptible and LOE D. immitis Based on these 186 SNPs, Sequenom® SNP frequency analyses were conducted on 663 individual parasites (adult worms and microfilariae) which were phenotypically characterized as susceptible (SUS), confirmed ML treatment survivors/resistant (RES), or suspected resistant/loss of efficacy (LOE) parasites. This approach identified 42 SNPs that appeared to differentiate ML-susceptible from LOE and resistant D. immitis isolates [13]. Such genetic markers for susceptibility/resistance may be useful in developing protocols for managing drug resistance in D. immitis and for establishing improved scientifically based protocols for registration of new heartworm preventives

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call