Abstract
The paper discusses an evolutionary knowledge approach to intelligent problem solving. A rule-based production system is used to model the problem and the means by which the problem space should be searched. Search heuristics are modelled as production rules. These rules are redundant as there may be more than one view on the best method for building solutions. Some rules may have complex reasoning for their actions, others have none. Deciding which rule is most appropriate is solved by a genetic algorithm and ultimately only the ‘fitter’ rules will survive. The approach eliminates the necessity of designing problem specific search or variation operators, leaving the genetic algorithm to process patterns independent of the problem at hand. Learning methods and how they aid evolution is also discussed: they are Lamarckian learning and the Baldwin effect. The approach is tested on a scheduling problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.