Abstract

Congenital heart diseases are one of the most common multi-factorial fetal abnormalities caused by a complex of endo- and exogenous factors. It is known that mutations in xenobiotic biotransformation genes can be associated with the pathogenesis of congenital heart diseases. In the presented research, 131 children with congenital heart diseases and 101 women having children with this pathology were included in the study group. In control group, 103 healthy children and their mothers were included. Single-nucleotide polymorphisms in the xenobiotic biotransformation genes CYP1A1 (rs1048943), CYP1A2 (rs762551), GSTP1 (rs6591256, rs1871042 and rs17593068) were detected by the real-time polymerase chain reaction. Gene-gene interactions were determined using the Multifactor Dimensionality Reduction method. We obtained no difference in the frequency of CYP1A1, CYP1A2 and GSTP1 between the study and control groups. At the same time, the genetic combinations GSTP1 (rs6591256)-GSTP1 (rs1871042) and GSTP1 (rs6591256)-GSTP1 (rs1871042)-CYP1A1 (rs1048943) in women; and GSTP1 (rs1793068)-GSTP1 (rs6591256)-GSTP1 (rs1871042)-CYP1A1 (rs1048943)-CYP1A2 (rs762551) in children contribute to the pathogenesis of congenital heart diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call