Abstract

The performance of non-linear identification techniques is often determined by the appropriateness of the selected input variables and the corresponding time lags. High correlation coefficients between candidate input variables in addition to a non-linear relation with the output signal induce the need for an appropriate input selection methodology. This paper proposes a genetic polynomial regression technique to select the significant input variables for the identification of non-linear dynamic systems with multiple inputs. Statistical tools are presented to visualize and to process the results from different selection runs. The evolutionary approach can be used for a wide range of identification techniques and only requires a minimal input and a priori knowledge from the user. The evolutionary selection algorithm has been applied on a real-world example to illustrate its performance. The engine load in a combine harvester is highly variable in time and should be kept below an allowable limit during automatic ground speed control mode. The genetic regression process has been used to select those measurement variables that have a significant impact on the engine load and that will act as measurement variables of a non-linear model-based engine load controller.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call