Abstract

Recent pharmacogenomic/pharmacogenetic studies have disclosed important roles of drug transporters in the pharmacokinetic/pharmacodynamic (PK/PD) profiles of some clinically relevant drugs. It has concurrently been explained that variations in the drug transporter genes are associated with not only inter-individual but also inter-ethnic differences in PK/PD profiles of these drugs. This review focuses on two uptake and two efflux transporters. Organic anion transporting polypeptide (OATP) 1B1 and OATP1B3 are uptake transporters, specifically expressed in the liver, and considered important for drugs, particularly as their pharmacological target organ is the liver. Two ATP-binding cassette transporters, multi-drug resistance-associated protein 2 and breast cancer resistance protein, are efflux transporters, expressed in various human tissues, and considered particularly important for intestinal drug absorption and hepatic drug elimination. All 3-hydroxyl-3-methylglutaryl-CoA reductase inhibitors (statins) except fluvastatin are substrates for OATP1B1, but hepatobiliary (canalicular) efflux transporters differ among statins. In this review, we update the pharmacogenomic/pharmacogenetic properties of these transporters and their effects on PK/PD profiles of statins and other clinically relevant drugs. In addition, we describe a physiologically-based pharmacokinetic model for predicting the effects of changes in transporter activities on systemic and hepatic exposure to pravastatin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call