Abstract
BackgroundWithin a population, the differences of pharmacogenomic variant frequencies may produce diversities in drug efficacy, safety, and the risk associated with adverse drug reactions. With the development of pharmacogenomics, widespread genetic research on drug metabolism has been conducted on major populations, but less is known about minorities.ResultsIn this study, we recruited 100 unrelated, healthy Mongol adults from Xinjiang and genotyped 85 VIP variants from the PharmGKB database. We compared our data with eleven populations listed in 1000 genomes project and HapMap database. We used χ2 tests to identify significantly different loci between these populations. We downloaded SNP allele frequencies from the ALlele FREquency Database to observe the global genetic variation distribution for these specific loci. And then we used Structure software to perform the genetic structure analysis of 12 populations.ConclusionsOur results demonstrated that different polymorphic allele frequencies exist between different nationalities,and indicated Mongol is most similar to Chinese populations, followed by JPT. This information on the Mongol population complements the existing pharmacogenomic data and provides a theoretical basis for screening and therapy in the different ethnic groups within Xinjiang.
Highlights
Within a population, the differences of pharmacogenomic variant frequencies may produce diversities in drug efficacy, safety, and the risk associated with adverse drug reactions
Our results demonstrated that different polymorphic allele frequencies exist between different nationalities,and indicated Mongol is most similar to Chinese populations, followed by JPT
Information regarding the selected very important pharmacogenetic (VIP) loci and their genotype frequencies is listed in Table 1, including the genes, their positions, the nucleotide change, the amino acid translation, the calculated allele frequencies, and the genotype frequencies for Mongols
Summary
The differences of pharmacogenomic variant frequencies may produce diversities in drug efficacy, safety, and the risk associated with adverse drug reactions. With the development of pharmacogenomics, widespread genetic research on drug metabolism has been conducted on major populations, but less is known about minorities. It is well known that different individuals have different reactions to the same medications. Pharmacogenomics seeks to identify genetic markers that may influence a person’s response to pharmaceuticals. It will undoubtedly become an indispensable part of medical care in the future [1, 2]. Pharmacogenomic research seeks to identify single nucleotide polymorphisms (SNPs) or multiple gene signatures that are possibly associated with medication responses [3]. The goal of the research is to provide information for personalized medicine, i.e. give to the patient the optimal medication in optimal dose, and promote personalized therapeutics [4,5,6].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.