Abstract

BackgroundMalaria caused by Plasmodium falciparum parasite is still known to be one of the most significant public health problems in sub-Saharan Africa. Genetic diversity of the Sudanese P. falciparum based on the diversity in the circumsporozoite surface protein (PfCSP) has not been previously studied. Therefore, this study aimed to investigate the genetic diversity of the N-terminal region of the pfcsp gene.MethodsA cross-sectional molecular study was conducted; 50 blood samples have been analysed from different regions in Sudan. Patients were recruited from the health facilities of Khartoum, New Halfa, Red Sea, White Nile, Al Qadarif, Gezira, River Nile, and Ad Damazin during malaria transmission seasons between June to October and December to February 2017–2018. Microscopic and nested PCR was performed for detection of P. falciparum. Merozoite surface protein-1 was performed to differentiate single and multiple clonal infections. The N-terminal of the pfcsp gene has been sequenced using PCR-Sanger dideoxy method and analysed to sequences polymorphism including the numbers of haplotypes (H), segregating sites (S), haplotypes diversity (Hd) and the average number of nucleotide differences between two sequences (Pi) were obtained using the software DnaSP v5.10. As well as neutrality testing, Tajima’s D test, Fu and Li’s D and F statistics.ResultsPCR amplification resulted in 1200 bp of the pfcsp gene. Only 21 PCR products were successfully sequenced while 29 were presenting multiple clonal P. falciparum parasite were not sequenced. The analysis of the N-terminal region of the PfCSP amino acids sequence compared to the reference strains showed five different haplotypes. H1 consisted of 3D7, NF54, HB3 and 13 isolates of the Sudanese pfcsp. H2 comprised of 7G8, Dd2, MAD20, RO33, Wellcome strain, and 5 isolates of the Sudanese pfcsp. H3, H4, and H5 were found in 3 distinct isolates. Hd was 0.594 ± 0.065, and S was 12. The most common polymorphic site was A98G; other sites were D82Y, N83H, N83M, K85L, L86F, R87L, R87F, and A98S. Fu and Li’s D* test value was − 2.70818, Fu and Li’s F* test value was − 2.83907, indicating a role of negative balancing selection in the pfcsp N-terminal region. Analysis with the global pfcsp N-terminal regions showed the presence of 13 haplotypes. Haplotypes frequencies were 79.4%, 17.0%, 1.6% and 1.0% for H1, H2, H3 and H4, respectively. Remaining haplotypes frequency was 0.1% for each. Hd was 0.340 ± 0.017 with a Pi of 0.00485, S was 18 sites, and Pi was 0.00030. Amino acid polymorphisms identified in the N-terminal region of global pfcsp were present at eight positions (D82Y, N83H/M, K85L/T/N, L86F, R87L/F, A98G/V/S, D99G, and G100D).ConclusionsSudanese pfcsp N-terminal region was well-conserved with only a few polymorphic sites. Geographical distribution of genetic diversity showed high similarity to the African isolates, and this will help and contribute in the deployment of RTS,S, a PfCSP-based vaccine, in Sudan.

Highlights

  • Malaria caused by Plasmodium falciparum parasite is still known to be one of the most significant public health problems in sub-Saharan Africa

  • Sudanese pfcsp N-terminal region was well-conserved with only a few polymorphic sites

  • Many studies in Sudan have focused on addressing the situation of malaria treatment efficacy [3,4,5], while others focused on reporting the genetic diversity and the genetic makeup of the parasite itself [6,7,8,9,10]

Read more

Summary

Introduction

Malaria caused by Plasmodium falciparum parasite is still known to be one of the most significant public health problems in sub-Saharan Africa. Malaria caused by Plasmodium falciparum parasite is still known to be one of the most significant public health problems in Africa [1]. It is known to have an essential role in the process of sporozoites entry into the human hepatic cells [18,19,20] It has approximately 420 amino acids and a molecular weight of 58 kDa. The gene that encodes PfCSP is subdivided into two non-repetitive regions, the N-terminal region and the C-terminal region (5′ and 3′ ends), and a variable central region consisting of multiple repeats of four-residues long motifs [21,22,23]. The polymorphism of these sub-regions is believed to be a result of natural selection related to host immunity [25,26,27]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call