Abstract

Peanut stem rot caused by Athelia rolfsii is a serious soilborne disease worldwide and is becoming increasingly important in China. A total of 293 A. rolfsii isolates were collected from four representative peanut producing provinces in northern, central, and southern China. These isolates were assigned to 45 mycelial compatibility groups (MCGs) through pairing testing. The MCG diversity among isolates was greater in the southern sampled provinces compared with the northern provinces. A high level of genetic variability was found among the isolates from Guangdong Province in southern China. Variations were found in mycelial growth rate and sclerotial number, size, and dry weight of isolates sampled from places in different latitudes. Size and dry weight of sclerotia were positively correlated with latitude (P < 0.01), but the number of sclerotia was negatively correlated with latitude (P < 0.01). All tester isolates were pathogenic on peanut but varied in disease index. Inter-simple sequence repeat analysis and unweighted pair-group method with arithmetic average clustering resulted in three distinct clusters that were associated with the geographical location of the collection sites and sclerotial traits but were not associated with virulence of these isolates. These findings imply that genetic diversity, morphological traits, and virulence among A. rolfsii isolates varied in diverse geographical regions in China, and genetic diversity and sclerotial traits might be affected by latitude.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.