Abstract

BackgroundNew genetic and genomic resources have identified multiple genetic risk factors for late-onset Alzheimer’s disease (LOAD) and characterized this common dementia at the molecular level. Experimental studies in model organisms can validate these associations and elucidate the links between specific genetic factors and transcriptomic signatures. Animal models based on LOAD-associated genes can potentially connect common genetic variation with LOAD transcriptomes, thereby providing novel insights into basic biological mechanisms underlying the disease.MethodsWe performed RNA-Seq on whole brain samples from a panel of six-month-old female mice, each carrying one of the following mutations: homozygous deletions of Apoe and Clu; hemizygous deletions of Bin1 and Cd2ap; and a transgenic APOEε4. Similar data from a transgenic APP/PS1 model was included for comparison to early-onset variant effects. Weighted gene co-expression network analysis (WGCNA) was used to identify modules of correlated genes and each module was tested for differential expression by strain. We then compared mouse modules with human postmortem brain modules from the Accelerating Medicine’s Partnership for AD (AMP-AD) to determine the LOAD-related processes affected by each genetic risk factor.ResultsMouse modules were significantly enriched in multiple AD-related processes, including immune response, inflammation, lipid processing, endocytosis, and synaptic cell function. WGCNA modules were significantly associated with Apoe−/−, APOEε4, Clu−/−, and APP/PS1 mouse models. Apoe−/−, GFAP-driven APOEε4, and APP/PS1 driven modules overlapped with AMP-AD inflammation and microglial modules; Clu−/− driven modules overlapped with synaptic modules; and APP/PS1 modules separately overlapped with lipid-processing and metabolism modules.ConclusionsThis study of genetic mouse models provides a basis to dissect the role of AD risk genes in relevant AD pathologies. We determined that different genetic perturbations affect different molecular mechanisms comprising AD, and mapped specific effects to each risk gene. Our approach provides a platform for further exploration into the causes and progression of AD by assessing animal models at different ages and/or with different combinations of LOAD risk variants.

Highlights

  • New genetic and genomic resources have identified multiple genetic risk factors for late-onset Alzheimer’s disease (LOAD) and characterized this common dementia at the molecular level

  • Expression of target genes was modified by genetic perturbations First, we have examined the relative expression of LOAD associated genes to validate each strain

  • In this study, we have performed transcriptomic analysis of mouse strains carrying different mutations in genes linked to AD by Genome-wide association studies (GWAS) to better understand the genetics and basic biological mechanisms underlying LOAD

Read more

Summary

Introduction

New genetic and genomic resources have identified multiple genetic risk factors for late-onset Alzheimer’s disease (LOAD) and characterized this common dementia at the molecular level. Experimental studies in model organisms can validate these associations and elucidate the links between specific genetic factors and transcriptomic signatures. Early-onset Alzheimer’s disease (EOAD) strikes prior to the age of 65 and accounts for approximately 5% of all AD cases, while the much more common late-onset Alzheimer’s disease (LOAD) is diagnosed at later life stages (> 65 years) [2, 5]. Before the era of large-scale genome wide association studies, the e4 allele of the apolipoprotein E (APOE) gene was the only well-established major risk factor for LOAD, accounting for about 30% of genetic variance [10, 11]. APOEε4 was inferred to have moderate penetrance [11] with homozygous carriers having a roughly five-timesincreased risk compared to those who inherit only one e4 allele of APOE [1, 12]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.