Abstract

This study was conducted to determine the genetic parameters of internal and external quality traits of Japanese quail eggs. Two statistical models were used in the calculation of genetic parameters and variance components. While 286 eggs were used based on model 1, 1,524 eggs were used based on model 2. Genetic parameters of the first eggs were calculated with direct genetic effect included in the analysis as random factors by using model 1. Model 2 was used for all eggs (5 to 6 eggs from each hen for six rearing groups). As different from model 1, their permanent environmental effects were also included in the model 2. Heritability of egg weight, egg length, egg width, shape index, shell weight, shell thickness, and shell ratio among the external quality traits of the eggs was respectively found to be 0.44, 0.53, 0.51, 0.70, 0.19, 0.16, and 0.05, respectively, according to model 1. These values were found to be 0.46, 0.40, 0.74, 0.48, 0.60, 0.28, and 0.21, respectively, according to model 2. Yolk weight, yolk diameter, yolk height, yolk index, yolk ratio, albumen weight, albumen height, albumen ratio, and Haugh unit values among the internal quality traits of the egg were found to be 0.22, 0.32, 0.02, 0.16, 0.19, 0.34, 0.19, 0.17, and 0.17, respectively, according to model 1. These internal quality traits were found to be 0.27, 0.18, 0.38, 0.06, 0.20, 0.41, 0.15, 0.15, and 0.12, respectively, according to model 2. Consequently, in this study, strong genetic correlations were detected between albumen height and Haugh unit, and also between albumen height and albumen weight. Additionally, a high and positive correlation was observed between some yolk traits (yolk weight and diameter) and albumen traits (weight and height). All these genetic correlations can be used to improve egg quality with a selection according to albumen weight.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.