Abstract

Due to the complexity of longevity trait in dairy cattle, two groups of trait definitions are widely used to measure longevity, either covering the full lifespan or representing only a part of it to achieve an early selection. Usually, only one group of longevity definition is used in breeding program for one population, and genetic studies on the comparisons of two groups of trait definitions are scarce. Based on the data of eight traits well representing the both groups of trait definitions, the current study investigated genetic parameters and genetic architectures of longevity in Holsteins. Heritabilities and correlations of eight longevity traits were estimated using single-trait and multi-trait animal models, with the data from 103,479 cows. Among the cows with phenotypes, 2,630 cows were genotyped with the 150K-SNP panel. A single-trait fixed and random Circuitous Probability Unification model was performed to detect candidate genes for eight longevity traits. Generally, all eight longevity traits had low heritabilities, ranging from 0.038 for total productive life and herd life to 0.090 for days from the first calving to the end of first lactation or culling. High genetic correlations were observed among the traits within the same definition group: from 0.946 to 0.997 for three traits reflecting full lifespan and from 0.666 to 0.997 for five traits reflecting partial productive life. Genetic correlations between two groups of traits ranged from 0.648 to 0.963, and increased gradually with the extension of lactations number regarding the partial productive life traits. A total of 55 SNPs located on 25 chromosomes were found genome-wide significantly associated with longevity, in which 12 SNPs were associated with more than one trait, even across traits of different definition groups. This is the first study to investigate the genetic architecture of longevity representing both full and the partial lifespan simultaneously, which will assist the selection of an appropriate trait definition for genetic improvement of longevity. Because of high genetic correlations with the full lifespan traits and higher heritability, the partial productive life trait measured as the days from the first calving to the end of the third lactation or culling could be a good alternative for early selection on longevity. The candidate genes identified by this study, such as RPRM, GRIA3, GTF2H5, CA5A, CACNA2D1, FGF10, and DNAJA3, could be used to pinpoint causative mutations for longevity and further benefit the genomic improvement of longevity in dairy cattle.

Highlights

  • Longevity is an economically important trait in dairy cattle, due to its large impact on the efficiency of dairy farming (Weigel et al, 1995; Essl, 1998)

  • The descriptive statistics of longevity traits in the Chinese Holstein population are presented in Table 1, and the distributions of each longevity trait is presented in Supplementary Figure 1

  • We suggested that the genes CACNA2D1, FGF10 and DNAJA3 can be considered as candidate genes for longevity

Read more

Summary

Introduction

Longevity is an economically important trait in dairy cattle, due to its large impact on the efficiency of dairy farming (Weigel et al, 1995; Essl, 1998). Genetic improvements of a population can be speeded up due to the possibility to increase voluntary culling rate while keep a relatively constant population size (Essl, 1998). By giving 5 ∼ 14% weights to productive life (covering the full lifespan trait) in the selection index, the longevity in United States Holsteins has started to improve. A total of 5 traits including productive days during period from first calving to the end of the first (Lon11), second (Lon12), third (Lon13), fourth (Lon14), or fifth lactation (Lon15) were used to evaluate longevity in the Nordic Cattle Genetic Evaluation. The investigation of genetic parameters for longevity traits with different definitions is critical for the selection of proper longevity traits to be added to the selection index [i.e., China Dairy Performance Index (CPI)] (Dairy Association of China, Beijing3)

Objectives
Methods
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call