Abstract

Drosophila melanogaster polytene chromosomes display specific banding pattern; the underlying genetic organization of this pattern has remained elusive for many years. In the present paper, we analyze 32 cytology-mapped polytene chromosome interbands. We estimated molecular locations of these interbands, described their molecular and genetic organization and demonstrate that polytene chromosome interbands contain the 5′ ends of housekeeping genes. As a rule, interbands display preferential “head-to-head” orientation of genes. They are enriched for “broad” class promoters characteristic of housekeeping genes and associate with open chromatin proteins and Origin Recognition Complex (ORC) components. In two regions, 10A and 100B, coding sequences of genes whose 5′-ends reside in interbands map to constantly loosely compacted, early-replicating, so-called “grey” bands. Comparison of expression patterns of genes mapping to late-replicating dense bands vs genes whose promoter regions map to interbands shows that the former are generally tissue-specific, whereas the latter are represented by ubiquitously active genes. Analysis of RNA-seq data (modENCODE-FlyBase) indicates that transcripts from interband-mapping genes are present in most tissues and cell lines studied, across most developmental stages and upon various treatment conditions. We developed a special algorithm to computationally process protein localization data generated by the modENCODE project and show that Drosophila genome has about 5700 sites that demonstrate all the features shared by the interbands cytologically mapped to date.

Highlights

  • Drosophila polytene chromosomes have served as the best available model of eukaryotic interphase chromosome

  • A group of 11 interbands was characterized in detail here, by comparing Bridges’ polytene maps, electron microscopy (EM) data, modENCODE protein localization data and mapping of intercalary heterochromatin (IH) regions [26]

  • Below we provide detailed description of mapping data for interband regions found in 7F1-2 and 100B

Read more

Summary

Introduction

Drosophila polytene chromosomes have served as the best available model of eukaryotic interphase chromosome They are prominent for their banding pattern formed by dark transverse stripes (called bands), which encompass large chunks of chromatin material. These bands alternate with fine, lighter-colored stripes that have less material and are more loosely packed. Genetic organization of bands and interbands defined as the pattern that sets positioning of genes and genetic features relatively to the structural elements of a chromosome, is still largely elusive. This is due to the fact that despite the availability of the Drosophila genome, methods to even approximately map band/interband borders on a physical map are still lacking

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.