Abstract
Recent studies indicate that pharmaceutical blockade of phosphoinositide 3-kinase (PI3K) signaling enzymes might be effective in reducing allergic airway inflammation. Signals generated by the p110delta PI3K isoform play critical roles in signaling through antigen and cytokine receptors and were shown to be required for induction of type 2, but not type 1, cytokine responses. We sought to determine the effect of genetic or pharmaceutical inactivation of p110delta PI3K on induction of IgE responses. We determined the effect of p110delta inactivation on induction of systemic IgE responses and on the ability of purified B lymphocytes to undergo IgE isotype switch in vitro. IgG and IgE germline transcription, postswitch transcription, protein expression, and secretion were measured, as well as cell division and expression of activation-induced cytidine deaminase, an enzyme required for isotype switch. Paradoxically, inactivation of p110delta PI3K led to markedly increased IgE responses, despite reduced production of other antibody isotypes. This result was seen by using genetic inactivation of p110delta inhibition with IC87114 compound or blockade with the broad-spectrum PI3K inhibitors PIK-90 and PI-103. Significant increases in IgG1/IgE double-positive cells were observed, indicating that inactivation of PI3K leads to uncontrolled sequential switching from IgG1 to IgE. Disruption of p110delta signaling results in increased germline transcription at the epsilon locus and increased activation-induced cytidine deaminase expression, suggesting deregulation at the level of the isotype switch process. Blockade of PI3K signaling leads to markedly enhanced B-cell switch to IgE and increased IgE levels in vivo, despite reduced type 2 cytokine production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.