Abstract

With the wide range of commercial uses of fifth generation (5G), new radio (NR) communication networks, the wireless transmission becomes more efficient, reliable and faster. At the same time, high-quality signal transmission for 5G networks and beyond has also encountered new opportunities and challenges. Channel coding is a key technology to ensure reliable information transmission and service quality. However, the 5G-NR LDPC coded bit-interleaved coded modulation (BICM) sometimes suffers from relatively high error floors, so it can not always guarantee the high-quality and low-delay wireless transmission. In this paper, we propose a further redesign of the 5G-NR LDPC coded BICM based on genetic algorithm (GenAlg). By adjusting the number of the non-zero elements, the corresponding positions and shifting values in base matrix, we optimize the 5G-NR LDPC codes with GenAlg according to the error performances of coded BICM schemes. Simulation results show that the optimized 5G-NR LDPC codes which still support length and rate compatible coding have lower error floors with a little performance loss int the waterfall region compared to the standard 5G-NR LDPC codes with different modulation orders.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call