Abstract

AbstractIn most parts of the world, male pigs are castrated shortly after birth to prevent the production of meat with an unpleasant odour called ‘boar taint’. However, public concerns regarding surgical castration are on the increase and it is becoming an important animal welfare issue due to the pain associated with the process. In addition, pork production from entire males is more desirable as it is 5-12% more efficient than that from castrates. Therefore, this study was conducted to investigate genetic opportunities to stop castration and produce boar-taint-free pork from entire males as a long-term cost-effective solution to the problem. The main compounds responsible for boar taint are androstenone and skatole. The genetic aspects of these two main boar-taint components were investigated in purebred pigs of a commercial sire line as well as crossbreds of three sire lines. The comparison of crossbreds suggests that significant genetic differences can be expected in the market hogs due to different sire line choices. Heritabilities for the three components ranged from 0.25 to 0.64. Their genetic correlations with production traits were close to zero or favourable. Model calculations using these parameters suggest that it is possible to reduce the concentrations of the main boar-taint components below thresholds for boar taint. This way, pork can be produced from males without castration and problems of boar taint can be eliminated in approximately four generations of genetic selection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.