Abstract

Genetic Network Programming (GNP) is a newly proposed evolutionary approach which can evolve itself and find the optimal solutions. It is a novel method based on the idea of Genetic Algorithm (GA) and uses the data structure of directed graphs. As GNP has been developed for dealing with problems in dynamic environments, many papers have demonstrated that GNP can be applied to many areas such as data mining, forecasting stock markets, elevator control systems, etc. Focusing on GNP's distinguished expression ability of the graph structure, this paper proposes a method named Genetic Network Programming with Reconstructed Individuals (GNP with RI). In the proposed method, the worst individuals are reconstructed and enhanced by the elite information before undergoing genetic operations (mutation and crossover). The enhancement of worst individuals mimics the maturing phe nomenon in nature, where bad individuals can become smarter after receiving good education. GNP with RI has been applied to the the-world which is an excellent benchmark for evaluating the proposed architecture. The performance of GNP with RI is compared with conventional GNP demonstrating its superiority.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.