Abstract
Missense mutations in Leucine-Rich Repeat kinase 2 (LRRK2) are the most common cause of inherited Parkinson's disease (PD). Elucidation of LRRK2 biology and pathophysiology is central to the development of therapeutic intervention. Our group and others have developed a number of genetic mouse models of LRRK2 utilizing different genetic approaches. These models exhibit certain PD-related pathologies (e.g. impaired dopamine transmission and tauopathies) and abnormal motor functions, providing valuable insight into potential LRRK2-mediated pathogenesis of PD. However, not surprisingly they lack of substantial neuropathology and clinical syndromes of PD. Ongoing investigation of these models has begun to shed light on LRRK2 cellular functions and pathogenic pathways and is expected to assist the identification and validation of PD drug targets. This report summarizes the recent findings in our genetic LRRK2 models and discusses their utility in understanding much needed knowledge regarding early stage (pre-symptomatic) disease progression, drug target identification, and potential application in chemical screening focused on inhibitors of kinase activity of LRRK2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.