Abstract

The patterns of genetic and morphological diversity of a widespread species can be influenced by environmental heterogeneity and the degree of connectivity across its geographic distribution. Here, we studied Quercus havardii Rydb., a uniquely adapted desert oak endemic to the Southwest region of the United States, using genetic, morphometric, and environmental datasets over various geographic scales to quantify differentiation and understand forces influencing population divergence. First, we quantified variation by analyzing 10 eastern and 13 western populations from the disjunct distribution of Q. havardii using 11 microsatellite loci, 17 morphological variables, and 19 bioclimatic variables. We then used regressions to examine local and regional correlations of climate with genetic variation. We found strong genetic, morphological and environmental differences corresponding with the large-scale disjunction of populations. Additionally, western populations had higher genetic diversity and lower relatedness than eastern populations. Levels of genetic variation in the eastern populations were found to be primarily associated with precipitation seasonality, while levels of genetic variation in western populations were associated with lower daily temperature fluctuations and higher winter precipitation. Finally, we found little to no observed environmental niche overlap between regions. Our results suggest that eastern and western populations likely represent two distinct taxonomic entities, each associated with a unique set of climatic variables potentially influencing local patterns of diversity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.