Abstract

Non-hematopoietic mesenchymal stem cells (MSCs) are widely used in regenerative medicine and tissue engineering as they possess multilineage differentiation potential and self-renewal properties. MSCs can be easily isolated from several tissues and expanded following standard cell culture procedures. MSCs have the capability of mobilization to the tumor site; so, they can automatically relocate to the tumor sites through their chemokine receptors following intravenous transplantation. In this respect, they can be used for MSC-based gene therapy. In this therapeutic technique, beneficial genes are inserted by viral and non-viral methods into MSCs that lead to transgene expression in them. Genetic modifications of MSCs have been widely studied and thoroughly investigated to further enhance their therapeutic efficacy. The current strategies of MSC-based therapies emphasize the incorporation of beneficial genes, which will enhance the therapeutic ability of MSCs and have better homing efficiency. Non-viral methods produce less toxicity and immunogenicity compared to viral gene delivery methods and thus represent a promising and efficient tool for the genetic engineering of MSCs. Several non-viral gene delivery strategies have been developed in recent decades, and some of them have been used for MSCs modification. This mini review provides an overview of current gene delivery approaches used for the genetic modification of MSCs with beneficial genes including viral and non-viral vectors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call