Abstract
The source of cells for tissue engineering applications remains a hurdle, predominantly for procedures in which there is insufficient time to harvest a patient's own cells. Animal cells are readily available, but undergo immune rejection. Rejection of animal (i.e., xenogeneic) tissue involves practically every component of the immune system. The initial phase, hyperacute rejection (HAR), involves natural xenoreactive antibodies and the complement system, and leads to endothelial cell lysis and rapid tissue destruction. The cell-surface epitope, galactose-alpha(1,3)-galactose (alphaGal), is presumed to play a key role in HAR. The later stage of immune response (delayed xenograft rejection or DXR), is mediated by immune cells such as monocytes. Carbohydrates are likely also involved in DXR, but their role in this phase of the immune response is less clear. A better understanding of all stages of xenogeneic immune rejection may make it feasible to create cell lines that are immune tolerant. In these studies, we have genetically modified bovine endothelial cells to study the roles of carbohydrates in immune rejection. Our studies suggest that one or more epitopes other than alphaGal may influence complement-mediated lysis. Furthermore, antibodies, as instigators in the complement response, and monocytes appear to recognize different cell surface epitopes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.