Abstract
Recently the genomic sequences of three multicellular eukaryotes, Caenorhabditis elegans, Drosophila melanogaster and Arabidopsis thaliana, have been elucidated. A number of cDNAs encoding glycosyltransferases demonstrated to have a role in N-linked glycosylation have already been cloned from these organisms, e.g., GlcNAc transferases and α1,3-fucosyltransferases. However, many more homologues of glycosyltransferases and other glycan modifying enzymes have been predicted by analysis of the genome sequences, but the predictions of full length open reading frames appear to be particularly poor in Caenorhabditis. The use of these organisms as models in glycobiology may be hampered since they all have N-linked glycosylation repertoires unlike those of mammals. Arabidopsis and Drosophila have glycosylation similar to that of other plants or insects, while our new data from MALDI-TOF analysis of PNGase A-released neutral N-glycans of Caenorhabditis indicate that there exists a range of pauci- and oligomannosidic structures, with up to four fucose residues and up to two O-methyl groups. With all these three ‘genetic model organisms’, however, much more work is required for a full understanding of their glycobiology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.