Abstract

Resistance to the insecticide DDT in the mosquito vectors of malaria has severely hampered efforts to control this disease and has contributed to the increase in prevalence of malaria cases seen in recent years. Over 90% of the 300-500 million annual cases of malaria occur in Africa, where the major vector is Anopheles gambiae. DDT resistance in the ZAN/U strain of An. gambiae is associated with an increased metabolism of the insecticide, catalysed by members of the glutathione S-transferase (GST) enzyme family, but the molecular mechanism underlying this metabolic resistance is not known. Genetic crosses show that resistance is autosomal and semidominant. We have used microsatellite markers to identify two quantitative trait loci (QTL), which together explain over 50% of the variance in susceptibility to DDT in the ZAN/U strain of An. gambiae. The first locus, rtd1, is on chromosome 3 between markers H341 and H88 and has a recessive effect with respect to susceptibility. The second locus, rtd2 is on chromosome 2L, close to marker H325 and has an additive genetic effect. The markers flanking these two QTL have been physically mapped to An. gambiae polytene chromosomes. They do not coincide with any of the GST genes that have been cloned and mapped in this species. Characterization of these QTL will lead to a clearer understanding of the mechanisms of metabolic resistance to DDT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.