Abstract

LED lighting has emerged as alternative to the current HPS standard in greenhouse production. However little is known about the impact on fruit quality under the different light spectra. We grew a biparental tomato RIL population between September 2019 and January 2020 under two commercial greenhouse supplemental lighting conditions, i.e. HPS, and 95% red/5% blue- LED, of about 220 µmol m−2 s−1 at maximum canopy height for 16 h per day. Differences in Brix and blossom-end rot (BER) between the two light conditions were observed and we studied the genetic influences on those traits, separating genetics located on chromosomes from genetics located in plastids. The Brix value was on average 11% lower under LED than under HPS supplemental lighting. A LED-light specific QTL for Brix was identified on chromosome 6. This QTL can be of interest for breeding for tomato varieties cultivated under LED supplemental lighting. A Brix-QTL on chromosome 2 was found for both light conditions. In our study fewer plants developed BER under LED supplemental lighting than under HPS. We identified a novel genetic locus on chromosome 11 for the incidence of BER that lead to a difference in about 20% of fruits with BER. This genetic component was independent of the light.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call