Abstract

BackgroundLinkage of DNA markers with phenotypic traits provides essential information to dissect clustered genes with potential phenotypic contributions in a target genome region. Pinus flexilis E. James (limber pine) is a keystone five-needle pine species in mountain-top ecosystems of North America. White pine blister rust (WPBR), caused by a non-native fungal pathogen Cronartium ribicola (J.C. Fisch.), has resulted in mortality in this conifer species and is still spreading through the distribution. The objective of this research was to develop P. flexilis transcriptome-wide single nucleotide polymorphism (SNP) markers using RNA-seq analysis for genetic mapping of the major gene (Cr4) that confers complete resistance to C. ribicola.ResultsNeedle tissues of one resistant and two susceptible seedling families were subjected to RNA-seq analysis. In silico SNP markers were uncovered by mapping the RNA-seq reads back to the de novo assembled transcriptomes. A total of 110,573 in silico SNPs and 2,870 indels were identified with an average of 3.7 SNPs per Kb. These SNPs were distributed in 17,041 unigenes. Of these polymorphic P. flexilis unigenes, 6,584 were highly conserved as compared to the genome sequence of P. taeda L (loblolly pine). High-throughput genotyping arrays were designed and were used to search for Cr4-linked genic SNPs in megagametophyte populations of four maternal trees by haploid-segregation analysis. A total of 32 SNP markers in 25 genes were localized on the Cr4 linkage group (LG). Syntenic relationships of this Cr4-LG map with the model conifer species P. taeda anchored Cr4 on Pinus consensus LG8, indicating that R genes against C. ribicola have evolved independently in different five-needle pines. Functional genes close to Cr4 were annotated and their potential roles in Cr4-mediated resistance were further discussed.ConclusionsWe demonstrated a very effective, low-cost strategy for developing a SNP genetic map of a phenotypic trait of interest. SNP discovery through transcriptome comparison was integrated with high-throughput genotyping of a small set of in silico SNPs. This strategy may be applied to mapping any trait in non-model plant species that have complex genomes. Whole transcriptome sequencing provides a powerful tool for SNP discovery in conifers and other species with complex genomes, for which sequencing and annotation of complex genomes is still challenging. The genic SNP map for the consensus Cr4-LG may help future molecular breeding efforts by enabling both Cr4 positional characterization and selection of this gene against WPBR.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-016-3079-2) contains supplementary material, which is available to authorized users.

Highlights

  • Linkage of DNA markers with phenotypic traits provides essential information to dissect clustered genes with potential phenotypic contributions in a target genome region

  • Phenotypic analysis of genetic resistance to C. ribicola Four seedling families were assessed for phenotypic segregation of Cr4-mediated resistance for Cr4 genetic mapping

  • The present study represents the first research on genetic mapping of the P. flexilis major gene (Cr4) for resistance against C. ribicola by genotyping single nucleotide polymorphism (SNP) of candidate genes discovered by RNA-seq analysis

Read more

Summary

Introduction

Linkage of DNA markers with phenotypic traits provides essential information to dissect clustered genes with potential phenotypic contributions in a target genome region. James (limber pine) is a keystone five-needle pine species in mountain-top ecosystems of North America. White pine blister rust (WPBR), caused by a non-native fungal pathogen Cronartium ribicola (J.C. Fisch.), has resulted in mortality in this conifer species and is still spreading through the distribution. James (limber pine) is a keystone five-needle pine species of the subgenus Strobus in mountain-top ecosystems of North America. White pine blister rust (WPBR), caused by a non-native fungal pathogen Cronartium ribicola (J.C. Fisch.), threatens the sustainability of this conifer species and other five-needle pines in North America [3]. WPBR, in combination with mountain pine beetle (Dendroctonus ponderosae), limber pine dwarf mistletoe (Arceuthobium cyanocarpum), and climate change have caused widespread mortality in P. flexilis and reduced capacity for forest recovery throughout a significant portion of its range [4,5,6]; a 40 % loss in basal area of P. flexilis is projected by 2030 in the absence of intervention [7]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call