Abstract

Optimizing leaf angle and other canopy architecture traits has helped modern maize (Zea mays L.) become adapted to higher planting densities over the last 60 years. Traditional investigations into genetic control of leaf angle have focused on one leaf or the average of multiple leaves; as a result, our understanding of genetic control across multiple canopy levels is still limited. To address this, genetic mapping across four canopy levels was conducted in the present study to investigate the genetic control of leaf angle across the canopy. We developed two populations of doubled haploid lines derived from three inbreds with distinct leaf angle phenotypes. These populations were genotyped with genotyping-by-sequencing and phenotyped for leaf angle at four different canopy levels over multiple years. To understand how leaf angle changes across the canopy, the four measurements were used to derive three additional traits. Composite interval mapping was conducted with the leaf-specific measurements and the derived traits. A set of 59 quantitative trait loci (QTLs) were uncovered for seven traits, and two genomic regions were consistently detected across multiple canopy levels. Additionally, seven genomic regions were found to contain consistent QTLs with either relatively stable or dynamic effects at different canopy levels. Prioritizing the selection of QTLs with dynamic effects across the canopy will aid breeders in selecting maize hybrids with the ideal canopy architecture that continues to maximize yield on a per area basis under increasing planting densities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call