Abstract
Based on a two-way pseudo-testcross strategy, high density and complete coverage linkage maps were constructed for the maternal and paternal parents of an intraspecific F2 pedigree of Populus deltoides. A total of 1,107 testcross markers were obtained, and the mapping population consisted of 376 progeny. Among these markers, 597 were from the mother, and were assigned into 19 linkage groups, spanning a total genetic distance of 1,940.3 cM. The remaining 519 markers were from the father, and were also were mapped into 19 linkage groups, covering 2,496.3 cM. The genome coverage of both maps was estimated as greater than 99.9% at 20 cM per marker, and the numbers of linkage groups of both maps were in accordance with the 19 haploid chromosomes in Populus. Marker segregation distortion was observed in large contiguous blocks on some of the linkage groups. Subsequently, we mapped the segregation distortion loci in this mapping pedigree. Altogether, eight segregation distortion loci with significant logarithm of odds supports were detected. Segregation distortion indicated the uneven transmission of the alternate alleles from the mapping parents. The corresponding genome regions might contain deleterious genes or be associated with hybridization incompatibility. In addition to the detection of segregation distortion loci, the established genetic maps will serve as a basic resource for mapping genetic loci controlling traits of interest in future studies.
Highlights
Genetic linkage maps provide unique tools in breeding and genomic studies in a variety of ways
Based on genetic linkage maps, markers tightly linked to traits of interest are useful for quantitative trait locus (QTL) detection, marker-aided selection, and marker-assisted cloning
The poplar species involved in this study is P. deltoides, we propose that the difference in the genetic lengths of the male and female maps is associated with the sex-determining system of this poplar species
Summary
Genetic linkage maps provide unique tools in breeding and genomic studies in a variety of ways. Based on genetic linkage maps, markers tightly linked to traits of interest are useful for quantitative trait locus (QTL) detection, marker-aided selection, and marker-assisted cloning. Jiangsu Province (URL: http://www.jstd.gov.cn/), and the Priority Academic Program Development (PAPD) program of Jiangsu Province TY received the fundings, and the funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.