Abstract

BackgroundMicroRNAs (miRNAs) are a class of non-coding RNAs with important post-transcriptional regulatory functions. To reveal the function of miRNAs in vivo, the critical step is to change their expression levels in the tissues or organs. In this work, we explored the application of several important genetic techniques in altering the expression of silk gland-specific miR-274 of silkworm (Bombyx mori).ResultsInjection of synthesized microRNA mimics and antagomirs exerted no effect on the expression of miR-274 in the silk gland, miR-274 sponge specifically absorbed miR-274 and down-regulated its expression, transgenic overexpression of miR-274 precursor significantly up-regulated miR-274, and finally tissue-specific CRISPR/Cas9 system achieved deletion of miR-274.ConclusionsA practical technical system was established for studying the functions of miRNAs in silk gland of Bombyx mori. Our research provides methodological support for the functional study of miRNAs and other noncoding RNAs in the silk gland and more organs in other species.

Highlights

  • MicroRNAs are a class of non-coding RNAs with important post-transcriptional regulatory functions

  • Anterior silk gland (ASG) is the site where liquid silk protein is assembled into silk fibers, middle silk gland (MSG) consists of three segments and synthesizes different sericin proteins, posterior silk gland (PSG) is a coiled long tube and synthesizes silk fibroin proteins

  • Its expression level obviously differed in the three divisions of silk gland, most highly expressed in the PSG, and secondly in the MSG (Fig. 1b)

Read more

Summary

Introduction

MicroRNAs (miRNAs) are a class of non-coding RNAs with important post-transcriptional regulatory functions. To reveal the function of miRNAs in vivo, the critical step is to change their expression levels in the tissues or organs. We explored the application of several important genetic techniques in altering the expression of silk gland-specific miR-274 of silkworm (Bombyx mori). Silk gland of silkworm can be divided into three divisions according to its morphology and function [2]. The division-specific structures and functions are highly related to the expression patterns of genes [2, 3]. Silk gland is an ideal organ for studying gene regulation and tissue remodeling [2]. MicroRNA (MiRNA) is a kind of non-coding RNA post-transcriptionally regulating almost all important life processes [4, 5]. As early as 2010, we identified miRNAs in the MSG and PSG of silkworm at day 3 of the fifth

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call