Abstract

Fumaric acid is one of the top 12-biomass building-block chemicals. In this study, we reported manipulation of E. coli central carbon metabolism with the aim to decrease the by-products and improve fumaric acid production. PEP-dependent glucose phosphotransferase system was replaced with a galactose translocation system to minimize the consumption of phosphoenolpyruvate. Engineering anaplerotic pathway (phosphoenolpyruvate carboxylase) was employed to redistribute carbon flux from glycolysis to Krebs cycle. Deletion of malate dehydrogenase and overexpression of acetyl-CoA synthase could decrease the byproducts malic acid and acetic acid. The combined strategies led to fumaric acid yield up to 1.53 g/g dry cell weight, a 50% increase compared with the parental strain. The result demonstrated that these genetic modifications were effective strategies for improving the production of fumaric acid and the engineered strain may serve a platform microbial cell factory for efficient production of fumaric acid or other dicarboxylic acids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.