Abstract

Dynamin is a membrane-associated GTPase that confers motor-like functions in membrane dynamics, such as endocytosis, in eukaryotic cells. Flotillin (reggie) proteins are also a widely conserved class of membrane proteins, associated with the formation of protein assemblies within the membrane, and with endocytotic processes. Bacterial dynamin has been shown to bind to membranes in vitro and to mediate membrane fusion. Bacillus subtilis DynA localizes to the cell division septum, and it was recently shown that it indeed plays a role in cell division. Interestingly, dynamin shows a genetic interaction with flotillin proteins in this prokaryotic model organism and the absence of both proteins results in a cell division and cell shape defect. Here, we show that in addition to the morphological phenotypes, a dynamin/flotillin double deletion strain shows a synthetic defect in cell motility, much stronger than that of flotillin single mutant cells. While the contribution of altered cell shape and slower growth of the double deletion strain on motility cannot be clearly assessed, our data emphasize the fact that dynamin and flotillin proteins play tightly connected functions in a wide range of aspects in membrane processes in bacteria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.