Abstract

In the human liver and adrenal, there is a single hydroxysteroid sulfotransferase, which catalyzes the transformation of dehydroepiandrosterone to dehydroepiandrosterone sulfate, the most abundantly circulating steroid in humans, and also catalyzes the sulfation of a series of other 3β-hydroxysteroids as well as cholesterol. Dehydroepiandrosterone sulfate serves as precursor for the formation of active androgens and estrogens in several peripheral tissues, indicating that hydroxysteroid sulfotransferase plays a pivotal role in controlling the hormonal action of sex steroids by regulating their bioavailability. We recently elucidated the structure of the gene encoding hydroxysteroid sulfotransferase (STD), also designated dehydroepiandrosterone sulfotransferase, which spans 17 kb and contains six exons. The STD gene was preliminarily assigned to chromosome 19 by polymerase chain reaction (PCR) amplification of DNA from a panel of human/rodent somatic cell hybrids. To locate the STD gene, the novel biallelic polymorphism found in intron 2 was genotyped in eight CEPH reference families by direct sequencing of PCR products. Two-point linkage analysis was first performed between the latter polymorphism and chromosome 19 markers from Généthon and NIH/CEPH. The closest linkage was observed with D19S412 (Zmax= 9.23; θmax0.038) and HRC (Zmax= 5.95; θmax0.036), located on the 19q13.3 region. A framework map including six Généthon markers flanking the polymorphic STD gene was created by multipoint linkage analysis. Thereafter, a high-resolution genetic map of the region was constructed, yielding to the following order: qter–D19S414–D19S224–D19S420–D19S217–(APOC2–D19S412)–(STD–HRC)– KLK–D19S22–D19S180–PRKCG–D19S418–tel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call