Abstract

Random genomic probes were used to assess levels of restriction fragment length polymorphism (RFLP) in two 2-generation outbred pedigrees of Acacia mangium Willd. Probes were evaluated for their ability to detect polymorphic loci in each pedigree and to determine the relative efficiency of different restriction enzymes in revealing polymorphisms. Sixty two percent of the probes which detected single- or low-copy number sequences revealed polymorphisms with at least one restriction enyzme. HpaII was the most efficient in detecting polymorphism among first-generation individuals. The recognition sequence of HpaII contains a CpG dimer, suggesting that cytosines in the CpG sequence may be hotspots for mutation in plant genomes, as previously reported in bacterial and mammalian genomes. Mendelian inheritance of 230 loci was demonstrated based on single-locus segregation in second-generation individuals. Less than 5% of loci showed evidence of segregation distortion. The proportion of fully informative loci (15%) was lower than previously reported in eucalypts reflecting the lower level of genetic diversity in A. mangium. The RFLP probes are suitable for the construction of a high-density genetic linkage map in A. mangium. Cross-hybridisation of the A.mangium RFLPs to DNA from species representing the three subgenera of the genus Acacia indicates that these markers could be used in breeding programs of other diploid acacias, for comparative studies of genome organisation, and for phylogenetic studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.