Abstract

Pig-derived tissues could overcome the shortage of human donor organs in transplantation. However, the glycans with terminal α-Gal and Neu5Gc, which are synthesized by enzymes, encoded by the genes GGTA1 and CMAH, are known to play a major role in immunogenicity of porcine tissue, ultimately leading to xenograft rejection. The N-glycome and glycosphingolipidome of native and decellularized porcine pericardia from wildtype (WT), GGTA1-KO and GGTA1/CMAH-KO pigs were analyzed by multiplexed capillary gel electrophoresis coupled to laser-induced fluorescence detection. We identified biantennary and core-fucosylated N-glycans terminating with immunogenic α-Gal- and α-Gal-/Neu5Gc-epitopes on pericardium of WT pigs that were absent in GGTA1 and GGTA1/CMAH-KO pigs, respectively. Levels of N-glycans terminating with galactose bound in β(1-4)-linkage to N-acetylglucosamine and their derivatives elongated by Neu5Ac were increased in both KO groups. N-glycans capped with Neu5Gc were increased in GGTA1-KO pigs compared to WT, but were not detected in GGTA1/CMAH-KO pigs. Similarly, the ganglioside Neu5Gc-GM3 was found in WT and GGTA1-KO but not in GGTA1/CMAH-KO pigs. The applied detergent based decellularization efficiently removed GSL glycans. Genetic deletion of GGTA1 or GGTA1/CMAH removes specific epitopes providing a more human-like glycosylation pattern, but at the same time changes distribution and levels of other porcine glycans that are potentially immunogenic.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call