Abstract

BackgroundIn Drosophila, the development of the fly eye involves the activity of several, interconnected pathways that first define the presumptive eye field within the eye anlagen, followed by establishment of the dorso-ventral boundary, and the regulation of growth and apoptosis. In Lobe (L) mutant flies, parts of the eye or even the complete eye are absent because the eye field has not been properly defined. Manifold genetic interactions indicate that L influences the activity of several signalling pathways, resulting in a conversion of eye tissue into epidermis, and in the induction of apoptosis. As information on the molecular nature of the L mutation is lacking, the underlying molecular mechanisms are still an enigma.ResultsWe have identified Protein Kinase D (PKD) as a strong modifier of the L mutant phenotype. PKD belongs to the PKC/CAMK class of Ser/Thr kinases that have been involved in diverse cellular processes including stress resistance and growth. Despite the many roles of PKD, Drosophila PKD null mutants are without apparent phenotype apart from sensitivity to oxidative stress. Here we report an involvement of PKD in eye development in the sensitized genetic background of Lobe. Absence of PKD strongly enhanced the dominant eye defects of heterozygous L2 flies, and decreased their viability. Moreover, eye-specific overexpression of an activated isoform of PKD considerably ameliorated the dominant L2 phenotype. This genetic interaction was not allele specific but similarly seen with three additional, weaker L alleles (L1, L5, LG), demonstrating its specificity.ConclusionsWe propose that PKD-mediated phosphorylation is involved in underlying processes causing the L phenotype, i.e. in the regulation of growth, the epidermal transformation of eye tissue and apoptosis, respectively.

Highlights

  • In Drosophila, the development of the fly eye involves the activity of several, interconnected pathways that first define the presumptive eye field within the eye anlagen, followed by establishment of the dorso-ventral boundary, and the regulation of growth and apoptosis

  • The small eye phenotype of L2 is controlled by protein kinase D activity In our conditions, the vast majority of L2 heterozygotes displayed an intermediate phenotype where both eyes are smaller

  • In the absence of Protein Kinase D (PKD) nearly 90% of the flies were grouped into class 3 or 4 (c3, c4) respectively, i.e. no or little leftovers of one or both eyes (Fig. 2b’, d), in agreement with a strong requirement of PKD activity during L-dependent eye development

Read more

Summary

Introduction

In Drosophila, the development of the fly eye involves the activity of several, interconnected pathways that first define the presumptive eye field within the eye anlagen, followed by establishment of the dorso-ventral boundary, and the regulation of growth and apoptosis. In Lobe (L) mutant flies, parts of the eye or even the complete eye are absent because the eye field has not been properly defined. Manifold genetic interactions indicate that L influences the activity of several signalling pathways, resulting in a conversion of eye tissue into epidermis, and in the induction of apoptosis. Concluded from genetic interactions, Lobe acts as a positive regulator of N and a negative regulator of Wg activities.

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.