Abstract

Linkage disequilibrium (LD) affects genomic studies accuracy. High-density genotyping platforms identify SNPs across animal genomes, increasing LD evaluation resolution for accurate analysis. This study aimed to evaluate the decay and magnitude of LD in a cohort of 81 crossbred dairy cattle using the GGP_HDv3_C Bead Chip. After quality control, 116,710 Single Nucleotide Polymorphisms (SNPs) across 2520.241Mb of autosomes were retained. LD extent was assessed between autosomal SNPs within a 10Mb range using the r2 statistics. LD value declined as inter-marker distance increased. The average r2 value was 0.24 for SNP pairs < 10kb apart, decreasing to 0.13 for 50-100kb distances. Minor allele frequency (MAF) and sample size significantly impact LD. Lower MAF thresholds result in smaller r2 values, while higher thresholds show increased r2 values. Additionally, smaller sample sizes exhibit higher average r2 values, especially for larger physical distance intervals (> 50kb) between SNP pairs. Effective population size and inbreeding coefficient were 150 and 0.028 for the present generation, indicating a decrease in genetic diversity over time. These findings imply that the utilization of high-density SNP panels and customized/breed-specific SNP panels represent a highly favorable approach for conducting genome-wide association studies (GWAS) and implementing genomic selection (GS) in the Bos indicus cattle breeds, whose genomes are still largely unexplored. Furthermore, it is imperative to devise a meticulous breeding strategy tailored to each herd, aiming to enhance desired traits while simultaneously preserving genetic diversity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call