Abstract

Heritable differences in gene expression between individuals are an important source of phenotypic variation. The question of how closely the effects of genetic variation on protein levels mirror those on mRNA levels remains open. Here, we addressed this question by using ribosome profiling to examine how genetic differences between two strains of the yeast S. cerevisiae affect translation. Strain differences in translation were observed for hundreds of genes. Allele specific measurements in the diploid hybrid between the two strains revealed roughly half as many cis-acting effects on translation as were observed for mRNA levels. In both the parents and the hybrid, most effects on translation were of small magnitude, such that the direction of an mRNA difference was typically reflected in a concordant footprint difference. The relative importance of cis and trans acting variation on footprint levels was similar to that for mRNA levels. There was a tendency for translation to cause larger footprint differences than expected given the respective mRNA differences. This is in contrast to translational differences between yeast species that have been reported to more often oppose than reinforce mRNA differences. Finally, we catalogued instances of premature translation termination in the two yeast strains and also found several instances where erroneous reference gene annotations lead to apparent nonsense mutations that in fact reside outside of the translated gene body. Overall, genetic influences on translation subtly modulate gene expression differences, and translation does not create strong discrepancies between genetic influences on mRNA and protein levels.

Highlights

  • Many genetic differences among individuals influence gene expression levels

  • Earlier work has found that the effects of genetic variants on mRNA and protein levels for the same genes appear to be very different

  • Many variants appeared to influence only mRNA levels, and vice versa. We studied this question by using a technique called ‘‘ribosome profiling’’ to measure translation in two yeast strains

Read more

Summary

Introduction

Many genetic differences among individuals influence gene expression levels Such regulatory variants are responsible for a large fraction of the variation in disease risk among humans and are thought to be important for the evolution of phenotypes [1,2,3]. While more recent work [8,9,10] has found that eQTL and pQTL are more concordant than seen in the initial studies, numerous discrepancies remain. Together, these results have been taken to suggest that there must be substantial genetic variation acting on posttranscriptional processes

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call