Abstract

The layout of functional cortical maps exhibits a high degree of interindividual variability that may account for individual differences in sensory and cognitive abilities. By quantitatively assessing the interindividual variability of orientation preference columns in the primary visual cortex, we demonstrate that column sizes and shapes as well as a measure of the homogeneity of column sizes across the visual cortex are significantly clustered in genetically related animals and in the two hemispheres of individual brains. Taking the developmental timetable of column formation into account, our data indicate a substantial genetic influence on the developmental specification of visual cortical architecture and suggest ways in which genetic information may influence an individual's visual abilities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.