Abstract
Measuring reproductive isolation across multiple generations and environments is a key endeavor in speciation research because it indicates which isolating barriers currently prevent introgression and the extent to which they are intrinsic versus environmentally dependent. Here, I present data from several crosses (parental crosses, F1s, F2s, back-crosses) between two species of killifish (Lucania goodei and L. parva) that have diverged along a salinity gradient (L. goodei--freshwater, L. parva--euryhaline). Offspring were raised under high and low salinity to test for (1) extrinsic isolation, (2) intrinsic isolation manifested through genetic incompatibilities, and (3) environmentally dependent genetic incompatibilities. I found evidence for both intrinsic and extrinsic isolation, but no evidence for environmentally dependent genetic incompatibilities. The presence of extrinsic and intrinsic isolation varied among fitness measures, and all forms of reproductive isolation were asymmetric. Early egg survival was independent of salinity, but demonstrated pronounced intrinsic isolation. Both extrinsic and intrinsic isolation existed for egg hatching and survival of fry to the eating stage. Unfortunately, the order in which extrinsic and intrinsic isolation arose is unresolved. Understanding the extent to which adaptation to salinity creates multiple forms of reproductive isolation is critical for understanding diversification in many fish taxa.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.