Abstract

HIF-1α is a hypoxia-inducible protein that regulates many cellular processes, including neural stem cell maintenance. Previous work demonstrated constitutive stabilization of HIF-1α in neural stem cells (NSCs) of the adult mouse subventricular zone (SVZ) and hippocampal subgranular zone (SGZ). Genetic inactivation of NSC-encoded HIF-1α in the adult SVZ results in gradual loss of NSCs, but whether HIF-1α is required for the maintenance of SGZ hippocampal progenitors and adult hippocampal neurogenesis has not been determined. Here we tested the hypothesis that HIF-1α plays an essential role in the maintenance of adult hippocampal neurogenesis using Nestin-CreERT2/R26R-YFP/Hif1afl/fl triple transgenic mice, in which HIF-1α was genetically inactivated in nestin+ hippocampal progenitors and their downstream progeny following tamoxifen exposure. We found that disruption of HIF-1α gene expression resulted in a marked 50% reduction of adult-generated dentate granule cells (DGCs) that was highly correlated with impaired hippocampal function, as assessed using two behavioral assays of pattern discrimination. These behavioral tests included the A-B contextual fear-conditioning task and the trial-unique, delayed nonmatching-to-location (TUNL) touch-screen operant chamber task. Our findings identify HIF-1α as a novel regulator of adult hippocampal neurogenesis under non-pathological conditions, and underscore the importance of neurogenesis for pattern discrimination learning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call