Abstract

Aging is associated with increased fat mass and decreased lean mass, which is strongly associated with the development of insulin resistance. Gastric inhibitory polypeptide (GIP) is known to promote efficient storage of ingested nutrients into adipose tissue; we examined aging-associated changes in body composition using 10-week-old and 50-week-old wild-type (WT) and GIP receptor knockout (Gipr −/−) mice on a normal diet, which show no difference in body weight. We found that Gipr −/− mice showed significantly reduced fat mass without reduction of lean mass or food intake, while WT mice showed increased fat mass and decreased lean mass associated with aging. Moreover, aged Gipr −/− mice showed improved insulin sensitivity, which is associated with amelioration in glucose tolerance, higher plasma adiponectin levels, and increased spontaneous physical activity. We therefore conclude that genetic inactivation of GIP signaling can prevent the development of aging-associated insulin resistance through body composition changes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.