Abstract

Eucalyptus nitens (Deane & Maiden) Maiden (shining gum) is widely grown for kraft pulp production in many cool temperate regions of the world. Improving the kraft pulp yield of this species is important for increasing plantation profitability, but traditional assessment is slow and expensive. Cellulose content, which is strongly correlated with pulp yield, has been used as an alternative in tree breeding programs. However, a direct measure of cellulose content still relies on wet chemistry, limiting the number of samples that can be processed and the subsequent gains that can be made in a tree breeding program. An indirect method such as near infrared (NIR) spectroscopy provides a large increase in the numbers of samples that can be analysed. In this study, the genetic gains in cellulose content of E. nitens were compared using cellulose content, determined using wet chemistry and predicted by NIR calibrations based on different sampling intensities. Genetic gains based on NIR-predicted cellulose content were high, and a large proportion of the gain was achievable using a direct measure of cellulose. Calibrations were robust and generally could be reliably used across sites. NIR-predicted cellulose is highly heritable, with heritabilities comparable to or better than direct measures of cellulose.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call