Abstract

The growth rate of chickens has made remarkable progress in recent decades through continuous breeding efforts. However, this advancement has also led to a decline in fertility among commercially bred chickens. Therefore, it is crucial to understand and improve factors that influence fertility to ensure the continued success of the industry. Here, we conduct a 3-generation selection experiment within 2 purebred female lines, with the aim of increasing the duration of fertility (DF). Duration of fertility refers to the length of time hens remain capable of producing fertilized eggs and is a crucial factor that directly impacts chick output. The results showed that significant genetic progress was achieved in embryo survival rates and the fertility duration day during both the peak and late laying periods. Moreover, after 3 generations of selective breeding, the disparities in embryo survival and chick health rates from setting eggs between 8-d and 5-d insemination intervals in the grandparent stock were significantly reduced. The rates decreased from 1.83% and 2.39 to 0.72% and 0.33%, respectively. Surprisingly, the hatching performances of hens with an 8-d interval were comparable to those hens that had not undergone genetic selection for DF and had a 5-d interval. We further discussed the possibility of extending the insemination interval to 8 d in parent stock for commercial practices. The parental populations exhibited remarkable performance in terms of percentages of embryo survival and healthy chicks from the setting eggs, with rates exceeding 94 and 90%, respectively. Thus, it can be inferred that an extended insemination interval is feasible by genetic selection for DF. These findings will provide valuable insights into the efficacy of genetic selection in enhancing DF and its practical application in commercial breeding programs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.