Abstract

The Lower Ordovician, Upper Knox Group rocks (the Kingsport and Mascot formations) in the Copper Ridge district consist predominantly of fine-grained dolostones, medium and coarser grained dolostones, and limestones. Dolomite crystals of medium and coarser grained dolostones show up to eight cathodoluminescent zones of variable width and intensity. Electron microprobe analyses indicate that the zoning is related to variation in Fe/Mn ratios, the brighter luminescent zones corresponding to lower ratios. Superposed on this growth zoning is a compositional zoning characterized by a general increase in Fe from core to rim of individual dolomite crystals. Field and petrographic studies (Churnet, 1979; Churnet et al., 1981) indicate that the fine-grained dolostones formed in supratidal to upper intratidal environments, whereas the precursor lime muds of the limestones as well as of the medium and coarser grained dolostones formed in shallow subtidal to lower intertidal environments. The large areal extent of the dolostones must have required a regionally abundant source of Mg such as marine water. Yet, both limestones and dolostones have low Na and Sr contents suggestive of their formation in solutions more dilute than normal marine water. It is proposed that the fine-grained dolostones formed by aggradation of initially very fine-grained dolostones in presence of fresh water, and that the limestones stabilized and the medium and coarser grained dolostones formed in environments of mixed marine and fresh waters. Considered in the light of ordering of partition coefficients, such a mixing model can account for the observed correlation pattern of trace elements (especially, SMn and SrFe) as well as the Fe distribution in the zoned dolomite crystals. Variation of the partition coefficient of Mn due to fluctuations in the relative proportions of fresh and marine waters in the diagenetic solution may explain the different Fe/Mn ratios observed in the growth zones (luminescence bands) of zoned dolomite crystals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.