Abstract
Benzo(α)pyrene (BaP) and lead (Pb) are common pollutants discharged greatly in ocean and causing detrimental impacts on marine organisms. Although mussels are one of the most prominent and frequently studied biological models, the research on their genomic alterations induced by the mixture of two totally different chemicals, is still rare. In present study, local marine mussels Mytilus coruscus were exposed in vivo to BaP (53.74 ± 19.79 μg/L), Pb (2.58 ± 0.11 mg/L) and their mixture for 6 days. The genotoxic damages were assessed by comet assay, micronucleus (MNi) test, and random amplified polymorphic DNA (RAPD) analysis. Significantly increased though transitory genomic damage was investigated after the exposure and showed consistency using various detecting methods. Additive genotoxicity was only found after 3 days combined exposure by means of MNi test, suggesting that BaP and Pb may play with alternative biological targets during metabolism and/or interaction with the genome. The geno-stability and the recovery capability were further detected both in vivo and in vitro after challenged by BaP. RAPD results showed coherence in BaP induced genotoxicity, together with time-specific alterations. The genomic instability was found to recover in both in vivo and in vitro exposure scenarios in present study. To our knowledge, this is the first study to focus on the genotoxicitiy induced by BaP, Pb and their mixture by multiple detecting techniques. The attempt to utilize model pollutants and marine organism to validate the potential value of RAPD analysis highlighted that it might be a useful tool in the research of genotoxicology, especially on the effect-mechanism interplay at genetic level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.