Abstract
The aim of this study was to evaluate the TNFβ NcoI polymorphism (rs909253) and immune-inflammatory, oxidative, and nitrosative stress (IO&NS) biomarkers as predictors of disease progression in multiple sclerosis (MS). We included 212 MS patients (150 female, 62 male, mean (±standard deviation (SD)) age = 42.7 ± 13.8years) and 249 healthy controls (177 female, 72 male, 36.8 ± 11years). The disability was measured the Expanded Disability Status Scale (EDSS) in 2006 and 2011. We determined the TNFβ NcoI polymorphism and serum levels of interleukin (IL)-6, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, IL-4, IL-10, and IL-17, albumin, ferritin, and plasma levels of lipid hydroperoxides (CL-LOOH), carbonyl protein, advanced oxidation protein products (AOPPs), nitric oxide metabolites (NOx), and total radical-trapping antioxidant parameter (TRAP). The mean EDSS (±SD) in 2006 was 1.62 ± 2.01 and in 2011 3.16 ± 2.29, and disease duration was 7.34 ± 7.0years. IL-10, TNF-α, IFN-γ, AOPP, and NOx levels were significantly higher and IL-4 lower in MS patients with a higher 2011 EDSS scores (≥3) as compared with those with EDSS < 3. The actual increases in EDSS from 2006 to 2011 were positively associated with TNF-α and IFN-γ. Increased IFN-γ values were associated with higher pyramidal symptoms and increased IL-6 with sensitive symptoms. Increased carbonyl protein and IL-10 but lowered albumin levels predicted cerebellar symptoms. The TNFB1/B2 genotype decreased risk towards progression of pyramidal symptoms. Treatments with IFN-β and glatiramer acetate significantly reduced TNF-α but did not affect the other IO&NS biomarkers or disease progression. Taken together, IO&NS biomarkers and NcoI TNFβ genotypes predict high disability in MS and are associated with different aspects of disease progression. New drugs to treat MS should also target oxidative stress pathways.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.