Abstract

We will describe the pathophysiology of hypercalciuria and the mechanism of the resultant stone formation in a rat model and draw parallels to human hypercalciuria and stone formation. Through inbreeding we have established a strain of rats that excrete 8-10 times more urinary calcium than control rats. These genetic hypercalciuric rats absorb more dietary calcium at lower 1,25-dihydroxyvitamin D3 levels. Elevated urinary calcium excretion on a low-calcium diet indicated a defect in renal calcium reabsorption and/or an increase in bone resorption. Bone from hypercalciuric rats released more calcium when exposed to 1,25-dihydroxyvitamin D3. Bisphosphonate significantly reduced urinary calcium excretion in rats fed a low-calcium diet. Clearance studies showed a primary defect in renal calcium reabsorption. The intestine, bone and kidneys of the hypercalciuric rats had increased numbers of vitamin D receptors. When hydroxyproline is added to their diet they form calcium oxalate stones, the most common stone type in humans. Increased numbers of vitamin D receptors may cause hypercalciuria in these rats and humans. Understanding the mechanism of hypercalciuria and stone formation in this animal model will help clinicians devise effective treatment strategies for preventing recurrent stone formation in humans.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.