Abstract

Leigh syndrome (LS), the most common childhood mitochondrial disorder, has characteristic clinical and neuroradiologic features. Mutations in more than 75 genes have been identified in both the mitochondrial and nuclear genome, implicating a high degree of genetic heterogeneity in LS. To profile these genetic signatures and understand the pathophysiology of LS, we recruited 64 patients from 62 families who were clinically diagnosed with LS at Seoul National University Children's Hospital. Mitochondrial genetic analysis followed by whole-exome sequencing was performed on 61 patients. Pathogenic variants in mitochondrial DNA were identified in 18 families and nuclear DNA mutations in 22. The following 17 genes analyzed in 40 families were found to have genetic complexity: MTATP6, MTND1, MTND3, MTND5, MTND6, MTTK, NDUFS1, NDUFV1, NDUFAF6, SURF1, SLC19A3, ECHS1, PNPT1, IARS2, NARS2, VPS13D, and NAXE. Two treatable cases had biotin-thiamine responsive basal ganglia disease, and another three were identified as having defects in the newly recognized genes (VPS13D or NAXE). Variants in the nuclear genes that encoded mitochondrial aminoacyl tRNA synthetases were present in 27.3% of cases. Our findings expand the genetic and clinical spectrum of LS, showing genetic heterogeneity and highlighting treatable cases and those with novel genetic causes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.